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Abstract

Analytical criteria are developed to estimate the error of aero-optical computations due to inadequate spatial resolution
of refractive index fields in high Reynolds number flow simulations. The unresolved turbulence structures are assumed to
be locally isotropic and at low turbulent Mach number. Based on the Kolmogorov spectrum for the unresolved structures,
the computational error of the optical path length is estimated and linked to the resulting error in the computed far-field
optical irradiance. It is shown that in the high Reynolds number limit, for a given geometry and Mach number, the spatial
resolution required to capture aero-optics within a pre-specified error margin does not scale with Reynolds number. In
typical aero-optical applications this resolution requirement is much lower than the resolution required for direct numer-
ical simulation, and therefore, a typical large-eddy simulation can capture the aero-optical effects. The analysis is extended
to complex turbulent flow simulations in which non-uniform grid spacings are used to better resolve the local turbulence
structures. As a demonstration, the analysis is used to estimate the error of aero-optical computation for an optical beam
passing through turbulent wake of flow over a cylinder.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we propose analytical criteria to estimate the spatial resolution required for aero-optical sim-
ulations. In such simulations the refractive index field, which is directly related to the fluctuating density field,
is obtained from a time dependent flow simulation such as large-eddy simulation (LES). The minimum
requirement for flow-field resolution that allows for accurate predictions of optical distortions is the focus
of this study. In this section, the general framework of aero-optical problems is introduced, followed by a brief
review of aero-optical studies and different computational approaches. The analysis is introduced in Section 2
by considering simplified models, such as homogeneous turbulence resolved on a uniform mesh. In Section 3
further details regarding the underlying assumptions of the analysis are discussed, and its extension to more
complex cases is presented. A numerical example is presented in Section 5 where LES of flow over a circular
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cylinder at Re ¼ 3900 and M ¼ 0:4 is considered for aero-optical computations, and the error due to lack of
resolution is compared with the predicted error by the proposed analysis.

1.1. Aero-optical framework

The field of aero-optics generally focuses on the far-field distortions of optical beams due to compressible
turbulence near optical apertures [1]. The flows of interest include boundary layers, wakes and cavity flows,
typically associated with flight through the atmosphere. Although the depth of turbulence in a typical aero-
optical field is not more than a few optical aperture diameters, density fluctuations in these flows can cause
wavefront distortions of the order of a few optical wavelengths [2,3]. Such initial distortions reduce the coher-
ence of the beams, so that by the time they arrive at the receivers, they have much lower intensities and are
more dispersed compared to undistorted beams.

An optical beam under such conditions experiences two regimes of propagation: first, propagation through
the turbulence near the optical device, where density fluctuations are significant and of relatively high fre-
quency/wavenumber and second, propagation through the atmosphere (see Fig. 1). In the first region, since
the distance is very short and the optical wavelength is much smaller than the flow structures, the ray optics
assumptions are valid. Furthermore, due to the fact that the refractive index variations are very small, passing
through the first region only causes phase errors in the beam. In other words, scattering and change in the
optical wave amplitude can be ignored in this region. As in Fig. 1, considering z as direction of optical prop-
agation, one can express this phase distortion as [1,4]
Uðx; y; z1Þ ¼ Uðx; y; z0Þ exp
�2pjLðx; yÞ

k

� �
; ð1Þ

Lðx; yÞ ¼
Z z1

z0

nðx; y; zÞdz; ð2Þ
where U is the electromagnetic field, k is the optical wavelength, j ¼
ffiffiffiffiffiffiffi
�1
p

, n represents the refractive index, z0

and z1 represent the boundaries of the turbulent regime (first region), and L is referred to as the optical path
length (OPL) and represents the time of travel between z0 and z1 for individual rays. Since the fluctuations in
the index of refraction are of small amplitude, j n� 1 j� 1, it can be shown that variations of L with x and y

represent wavefront distortions at z1 [4].
After the beam passes through the turbulent regime, it travels a long distance to the receiver. Mani et al. [5]

have provided a useful description of far-field propagation in which the initial wavefront aberrations and
diffraction effects are linked separately to the far-field optical distortions. It should be noted that the problem
of distortion due to atmospheric turbulence can generally be corrected using adaptive optics because the
z 0 z 1
z

y

Fig. 1. Schematic of aero-optical distortions and a typical computational setup.
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refractive index field involves larger spatio-temporal scales. In the present analysis we assume free-space prop-
agation to the far-field.

1.2. Computational approaches to aero-optics

In contrast to the problem of wave propagation in a turbulent atmosphere, which has been tackled primar-
ily with the application of wavefront sensors and deformable correction mirrors, the aero-optical distortions
usually take place at spatial and temporal frequencies which are orders of magnitude higher than the capabil-
ities of current correction technologies [6,7]. The high frequency of the problem also makes it technically dif-
ficult and expensive to investigate experimentally. Since the late 1980’s, numerical studies of aero-optical
phenomena, which allow for the probing of flows and optical fields in greater detail, have emerged as a valu-
able tool to complement experiments.

Due to lack of computational power, earlier computations were typically based on Reynolds-averaged
Navier–Stokes (RANS) calculations with a turbulence model, such as the k–e model [8,9]. However, since
aero-optics is highly dependent on fluctuations in the turbulent density field, an accurate representation of
aero-optical distortions with a RANS simulation alone is not possible. Optical modeling is generally required
in addition to turbulence modeling to represent the optical distortions. These types of approaches involve
adjustable model parameters which are flow-regime dependent and must often be tuned for a given flow
configuration.

Truman [10] and Truman and Lee [11] performed one of the first computational studies of aero-optical dis-
tortions using direct numerical simulations (DNS) of a homogeneous shear flow as well as a turbulent channel
flow. They used a passive scalar field in an incompressible flow to model fluctuations of the refractive index
field. Truman [10] found that large turbulence structures provided the dominant contributions to the wave-
front distortions.

Since DNS of a realistic flow is prohibitively expensive, LES is of major recent interest for aero-optical
computations. LES is capable of capturing a range of flow structures, from large-scale motions down to
the scale comparable to the mesh spacing, while the effect of unresolved features is modeled. LES has been
used for aero-optical computations in various flow configurations, from simple shear [4,12,13] and wake [3]
flows to flows around complex objects, such as the fuselage of an aircraft [2].

In most of the previous LES-based studies, the grid resolution requirement for accurate representation of
aero-optical effects have not been considered. In addition, in order to provide robustness, most studies have
used dissipative numerical schemes, which have been shown to artificially damp resolvable small scales of the
flow [14]. In these simulations, it has been implicitly assumed that sub-grid scales and artificially damped
resolved small-scale features of the flow are optically unimportant. Although these simulations may capture
low order flow statistics, this does not necessarily guarantee that the aero-optical effects of the flow can be
provided with the same resolution. Without a resolution criterion grid convergence studies are needed to
ensure the satisfactory resolution of the aero-optical effects (see, for example, Tromeur et al. [4]).

Although the resolution requirements for computing turbulent flows and their Reynolds number depen-
dence are reasonably established, there is not much information in the literature regarding the resolution
requirements for aero-optical simulations. This motivated us to perform an analysis on this issue to provide
a rule-of-thumb estimate of grid spacing required for such simulations. As will be observed in Section 2,
parameters such as the optical wavelength and the free stream refractive index, which do not play a role in
hydrodynamics, are very important in determining optically important scales.

Another area of potential interest in this research is optical sub-grid-scale modeling for aero-optical simu-
lations. Since LES does not resolve flow scales smaller than grid spacing, the potential need for an optical sub-
grid-scale model (in addition to the flow sub-gird model) has become a topic under consideration. Using that
type of approach, the optical effects of unresolved flow structures will be mathematically modeled. Neverthe-
less, it is useful to first examine the cost of resolving all of the relevant scales for aero-optical computations
and how it scales with the Reynolds number as the Reynolds number becomes very high. Our analysis deter-
mines the resolution required for accurately capturing the aero-optical distortions. By comparing this resolu-
tion to the resolution required for flow simulation, we can determine whether to use an optical sub-grid model
or resolve the optically active scales without resorting to such modeling.
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2. Analysis

In this section, the influence of inadequate spatial resolution on the error of aero-optical computations is
analyzed. The analysis involves three major steps: first, an error measure for aero-optical computations is
established and linked to the error in the computed OPL. Based on this error measure an accuracy criterion
is introduced; second, the wavenumber spectrum of the OPL is linked to the spectrum of the index of refrac-
tion field and, thus, to the density and the pressure field; third, by considering a Kolmogorov spectrum for the
unresolved flow, the error of aero-optical computation due to unresolved flow is estimated.

In this section we make simplifying assumptions such as homogeneity and isotropy of turbulence and uni-
form grid spacing. Since some of these assumptions limit the applicability of the results for practical problems,
a modified analysis applicable to complex cases is introduced in Section 3.

2.1. Step 1: error measure for aero-optical computations

To begin the analysis, we start with the beam introduced in Section 1.1. Eq. (1) describes the electromag-
netic field after the beam passes the turbulent region. Since Uðx; y; z0Þ, the field at the aperture, is analytically
known, the only error in computation of electromagnetic field after the beam passes the turbulence region can
be caused by computational errors in L. One can write
L ¼ Ln þ Le; ð3Þ
where subscripts n and e represent the numerical value and the error value due to unresolved flow,
respectively. Due to linearity, it is clear that a relation similar to Eq. (2) exists between Le and the unresolved
refractive index field ne. Substituting Eq. (3) into Eq. (1) and using a Taylor expansion around L ¼ Ln result in
Uðx; y; z1Þ ¼ Uðx; y; z0Þ exp � 2pj

k
Ln

� �
� 2pj

k
Le

� �
Uðx; y; z0Þ exp � 2pj

k
Ln

� �
þO L2

e=k
2

� �
: ð4Þ
Note that in aero-optical computations, distances far beyond z1, called the far-field, are the locations where U

must be accurately computed. Fourier optics methods can compute the wave propagation after z1 almost with-
out additional errors. According to Eq. (4), the beam properties at z1 are written as the superposition of two
beams; the first term on the right hand side represents the computed beam, and the remaining terms represent
the error beam (U e). Both of these beams propagate in the far-field according to the wave equation, and their
energy remains constant. Therefore, the far-field computations will be accurate if, and only if, at location z1

the error beam has much less energy than the computed beam. Henceforth, a simple criterion to check the
accuracy of aero-optical computations can be based on this energy ratio. If the ratio is smaller than a thresh-
old, n, for example 5%, then one can assume that the resolution of the flow simulation is adequate to capture
the aero-optical effects. From Eq. (4) this energy ratio is,
2p
k

� �2 Z Z
Iðx; yÞLeðx; yÞ2dxdy < n; ð5Þ
where I ¼j Uðx; y; z0Þj2=
R R
j Uðx; y; z0Þj2dxdy is the normalized aperture intensity profile, and the integration

domain is composed of all x and y locations corresponding to the beam’s aperture. In most applications the
aperture profile is either a smooth function or a top-hat function. To further simplify Eq. (5) one can decom-
pose the integration domain into some small areas over which I can be considered constant. Given the small
correlation length scale of Le, compared to the size of these areas, one can replace L2

e with its ensemble average
based on the ergodic assumption. Recombining the integrals over the smaller domains into one integral results
in
 Z Z

IL2
edxdy ’

Z Z
IL2

edxdy; ð6Þ
where the over-line indicates the ensemble average. If the unresolved flow is assumed statistically homoge-
neous in x and y, L2

e does not depend on x and y. Noting that
R R

Idxdy ¼ 1, Eq. (5) can be simplified to
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2p
k

� �2

L2
e < n: ð7Þ
ð2p=kÞ2L2
e is an error measure for aero-optical computations, and Eq. (7) is the proposed criterion for accu-

racy of aero-optical computations.

2.2. Step 2: OPL spectrum in terms of the pressure spectrum

In order to assess the adequacy of the flow resolution, we need to link L2
e to the resolution of the flow sim-

ulation. At this step, we first seek a relationship between correlation functions of the OPL error,
RLeðx; yÞ ¼ Leðx0 þ x; y0 þ yÞLeðx0; y0Þ, and that of the unresolved index of refraction field, Rneðx; y; zÞ. In
Appendix A it is shown that
RLeðx; yÞ ’ Dz
Z þ1

�1
Rneðx; y; zÞdz; ð8Þ
where Dz ¼ z1 � z0. In deriving Eq. (8) it has been assumed that the correlation length of the unresolved flow is
much smaller than the aperture size and depth of turbulence over which the optical beam propagates. Using

Eq. (8) a relationship between the two-dimensional spectrum of the wavefront error, dRLe ðkx; kyÞ, and the
three-dimensional spectrum of the unresolved refractive index field, dRne ðkx; ky ; kzÞ, can be obtained
dRLe ðkx; kyÞ ¼
1

ð2pÞ2
Z Z

RLeðx; yÞ exp jðkxxþ kyyÞ
	 


dxdy

¼ Dz

ð2pÞ2
Z Z Z

Rneðx; y; zÞ exp jðkxxþ kyyÞ
	 


dxdy dz ¼ ð2pDzÞdRne ðkx; ky ; 0Þ: ð9Þ
According to the Gladstone–Dale law, the refractive index field is a function of density [15]. Also assuming
a high Reynolds number flow with small variation of the sound speed, one can relate density fluctuations to
pressure fluctuations:
n ¼ 1þ GðkÞq; ð10Þ
p � p0 ¼ c2

0ðq� q0Þ; ð11Þ
where q is the fluid density, G is the Gladstone–Dale constant, p represents the pressure field, c is the speed of
sound, and subscript 0 represents values at the free stream. Therefore, spectral information regarding the pres-
sure field can be linked to the spectrum of the refractive index field. Because Eqs. (10) and (11) are linear, sim-
ilar relations such as Eqs. (10) and (11) exist between the unresolved quantities (i.e. ne ¼ G

c2
0

pe). Rewriting Eq.
(9) based on pressure spectrum results in
dRLe ðkx; kyÞ ¼ ð2pDzÞ GðkÞ
c2

0

� �2dRpe
ðkx; ky ; 0Þ: ð12Þ
2.3. Step 3: Kolmogorov hypothesis for unresolved flow

There are published results concerning pressure fluctuations in incompressible turbulent flow fields (see for
example [16–18]), which can be used to estimate the pressure spectrum here given the low turbulence Mach
number. It should be noted that in the literature it has been less common to report the spectrum in the
three-dimensional form ðcRpðkx; ky ; kzÞÞ. Instead, the one-dimensional energy spectrum EpðkÞ is frequently

reported. EpðkÞ is the integral of the three-dimensional pressure spectrum cRpðkx; ky ; kzÞ over spherical shells
of constant k. For an isotropic field, the two spectra are related by
cRpðkx; ky ; kzÞ ¼ Epðj k jÞ=ð4p j kj2Þ; ð13Þ

where j k j¼ ðk2

x þ k2
y þ k2

z Þ
1=2. According to the Kolmogorov hypothesis, the pressure energy spectrum in the

inertial range of a locally isotropic flow is [17]
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EpðkÞ ¼ Bpq
2
0�

4=3k�7=3; ð14Þ

where Bp is a constant of order unity and � is the turbulent dissipation rate. Gotoh and Fukayama [18] esti-
mated Bp to be 8:0� 0:5 using a DNS of isotropic turbulence. Next, we assume that the flow has been simu-
lated using LES on a uniform grid with a cut-off wave-number kc. This cut-off wavenumber is usually in the
inertial range and is smaller than the wavenumber associated with Kolmogorov length scale, kg ¼ 2p=g.
Therefore, assuming a ‘‘perfect” LES in the sense that it captures the flow at wave-numbers smaller than
kc, a simple spectrum for the unresolved pressure field would be (note Eq. (14))
Epe
ðkÞ ¼ Bpq2

0�
4=3k�7=3; kc 6 k 6 kg;

0; k > kg or k < kc:

(
ð15Þ
Since the spectrum after kg has an exponential decay, it is simply ignored. By combining Eqs. (12), (13) and
(15) the spectrum of Le is obtained
dRLe ðkx; kyÞ ¼
BpDzðn0 � 1Þ2

2c4
0

�4=3 j kjð�7=3�2Þ
; kc 6 k 6 kg; ð16Þ
where j k j¼ ðk2
x þ k2

yÞ
1=2. By integrating Eq. (16) over all wave-numbers, we can calculate the mean squared

error of the computed wavefront:
L2
e ¼

3pBp

7

ðn0 � 1Þ2�4=3

c4
0

" #
lc

2p

� �7=3

� g
2p

� �7=3
" #

Dz; ð17Þ
where lc is the grid resolution equal to 2p=kc. In the case of a very high Reynolds number, g becomes very
small and can be ignored,
L2
e ¼

3pBp

7

ðn0 � 1Þ2�4=3

c4
0

" #
lc

2p

� �7=3

Dz: ð18Þ
By substituting Eq. (18) into Eq. (7) we obtain the criterion for checking the adequacy of the LES resolution:
12p3Bp

7k2

ðn0 � 1Þ2�4=3

c4
0

" #
lc

2p

� �7=3

Dz < n: ð19Þ
2.4. Dependence on flow parameters

Eq. (19) is the fundamental result of this paper. For a compressible turbulence with parameters �, c0 and n0,
this equation determines the length scale that should be resolved in order to have accurate aero-optical com-
putations with optical wavelength k. Some of the interesting consequences of this result are discussed below.

1. In the high Reynolds number limit, the resolution requirement does not scale with Reynolds number.
Although the hydrodynamic simulations require sub-grid scale models at high Reynolds numbers, we
can avoid additional sub-grid modeling for aero-optics by resolving the critical scales given by Eq. (19).

2. For a flow with a characteristic length scale l and a characteristic velocity u, � can be approximated as u3=l.
Therefore, Eq. (19) can be rewritten in the form
lc �
n3=7

M12=7ðn0 � 1Þ6=7

k6=7l4=7

Dz3=7
; ð20Þ
where M is the characteristic turbulent Mach number of the flow (u=c0). In this form, the required resolu-
tion is written as a function of the non-dimensional parameters, M, n and n0, and three length scales, l, k
and Dz. According to this description, the important flow parameters are the turbulence length scale and the
turbulent Mach number; the important optical parameters are the characteristic refractive index and optical
wavelength; the important geometric parameter is the depth of the turbulence field.
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3. In a typical aero-optical setup one can have, for example, l � 1m, Dz � 1m, k � 1lm, M � 0:4,
ðn0 � 1Þ � 10�4 and n � 5%. Based on these parameters, assuming Bp ¼ 8:5 from Ref. [18] Eq. (19) predicts
the value of lc to be about 1.2 cm. Assuming that resolving such wavelengths requires grid spacing of 6 mm
(based on Nyquist criterion), the required number of grid points in each direction would be approximately
170. In other words, with only five million grid points, the aero-optics of this flow can be captured accu-
rately. Such a requirement can be readily met by a moderate parallel computing facility. Moreover, it
should be noted that such a resolution is similar to practical LES resolutions. As a result, under typical flow
conditions, resolving optically relevant scales do not need considerable aditional cost compared to that of
LES.

4. It should be noted that under extreme conditions the resolution requirements for capturing optical effects
may be close to that of DNS. For example, one can imagine a case where the optical device uses an extre-
mely small wavelength (much smaller than 10�6m) so that acceptable L2

e becomes very small (see Eq. (7)). In
such a case if Reynolds number is not very high, Eq. (17) can lead to lc values very close to g. Under such
conditions the approximation of Eq. (18) which ignores the g term is invalid and leads to very conservative
estimates for lc.
3. Extension to complex simulations

The procedure for obtaining Eq. (19) was based on the following assumptions: (1) smooth or piecewise
smooth aperture optical intensity profile; (2) small correlation length of unresolved flow compared to the aper-
ture size; (3) small correlation length of unresolved flow compared to the turbulence depth; (4) high Reynolds
number flow; (5) isotropic unresolved scales; (6) uniform grid resolution and (7) homogeneous flow statistics
and small variation of the sound speed (low turbulence Mach number).

The correlation length scale of unresolved flow is typically of order of the grid spacing lc. Therefore, if the
LES grid is such that the aperture intensity profile and the geometry of the flow are well resolved, assumptions
1-3 will be satisfied. Since the small structures of high Reynolds number flows are isotropic, small grid spacing
automatically guarantees the fifth assumption. In summary, assumptions 1–5 will be satisfied if
lc � lgeometry; laperture: ð21Þ

This relation is usually satisfied for practical aero-optical flows and typical LES resolutions. As a result,
assumptions 6 and 7 are the only ones that limit the applicability of the criterion developed, Eq. (19). In this
section, we modify the preceding analysis in order to relax conditions 6 and 7 and extend the criterion to more
practical flows. Nevertheless, even without modifications, Eq. (19) can still be used as a rule-of-thumb estimate
of the adequacy of LES resolution. In that case, averaged values of lc and � can be used.

To extend the analysis to practical flows, we first assume that the flow statistics and grid resolution vary in
the z direction only. In this case Eq. (7) is still valid, and it is only necessary to modify Eq. (18). One can
decompose the flow domain in z direction into several sub-intervals such that the flow statistics and grid res-
olution are almost constant in each sub-interval. By decomposing ½z0; z1� into ½s0; s1� [ ½s1; s2�[
½s2; s3�; . . . ; ½sn�1; sn� ðz0 ¼ s0 � s1 � s2 � � � � sn ¼ z1Þ, one can rewrite Eq. (2) in the following form,
Le ¼
Z s1

s0

nedzþ
Z s2

s1

nedzþ � � � ¼ Le1 þ Le2 þ � � � þ Len; ð22Þ
where Lei (i ¼ 1 to n) is the OPL error of the ith interval. L2
e can then be written as
L2
e ¼

Xn

i¼1

L2
ei þ

X
i6¼j

LeiLej:
The second summation is the correlation between sub-integrals of ne corresponding to different sub-intervals.
It is reasonable to assume that each sub-interval is well resolved such that the correlation length scale of ne,
which is of order lc, is much smaller than the size of the local sub-interval; in other words we can assume that
Lei is uncorrelated with Lej for i 6¼ j, and the ensemble average of their product is zero. Neglecting the second
summation in Eq. (3) and using Eq. (18) to estimate L2

ei based on local parameters result in
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L2
e ’

3pBp

7

Xn

i¼1

ðni � 1Þ2�4=3
i

c4
i

" #
lci

2p

� �7=3

ðsi � si�1Þ ’
3pBp

7

Z z1

z0

ðnðzÞ � 1Þ2�ðzÞ4=3

cðzÞ4

" #
lcðzÞ
2p

� �7=3

dz; ð23Þ
where lcðzÞ is a measure of the local resolution and is related to local grid spacing and discretization scheme
used in CFD. Considering the capabilities of current LES methods, it is reasonable to estimate lc based on the
maximum value of grid spacing ðlc ’ 2 maxfdx; dy; dzgÞ. By substituting Eq. (23) into Eq. (7) a more general
version of the criterion can be obtained
12p3Bp

7k2

Z z1

z0

ðnðzÞ � 1Þ2�ðzÞ4=3

cðzÞ4

" #
lcðzÞ
2p

� �7=3

dz < n: ð24Þ
The analysis can be extended even further to cases where the flow and grid are not homogeneous in all direc-
tions. In this case, Eq. (5) cannot be simplified to the form of Eq. (7). However, assuming that the grid spacing
in LES is much smaller than the length scale of inhomogeneity of flow statistics, Eq. (6) is still valid. Also,
L2

e can be estimated by Eq. (23). Substituting Eq. (23) into Eq. (6) and then Eq. (5) leads to
12p3Bp

7k2

Z Z
I

Z z1

z0

ð�n� 1Þ2�4=3

�c4

" #
lc

2p

� �7=3

dzdy dx < n; ð25Þ
where the integration domain in x-y plane is the same as the aperture. Eq. (25) is the most general form of the
criterion. Recalling from Section 2.1, n is the threshold error and the left hand side of Eq. (25) is the error
estimate of the computed electromagnetic field in the far-field (L2 norm squared)
R R

j U ej2dxdyR R
j U j2dxdy

’ 12p3Bp

7k2

Z Z
I

Z z1

z0

ð�n� 1Þ2�4=3

�c4

" #
lc

2p

� �7=3

dzdy dx; ð26Þ
where U e is the difference between the exact electromagnetic field and the one computed from coarse repre-
sentation of the flow. If the criterion given by Eq. (25) is satisfied one can be assured that the flow resolution
is adequate for capturing aero-optical effects within the pre-specified error margin. Based on the analysis Eq.
(25) is valid if

1. the flow is at high Reynolds number;
2. the fields of �n, �, �c, lc and I are well resolved such that the length scale of inhomogeneity of these fields are

much larger than the local grid spacings.

The second condition enables us to decompose the domain into sub-domains where we can apply the result
of the homogeneous analysis (Eq. (19)). These new conditions are very likely to be satisfied in a typical LES. It
should be noted that, to link the index of refraction field to pressure filed via Eqs. (10) and (11), we have
implicitly assumed that unresolved pressure fluctuations are correlated to unresolved density fluctuations
through the local ensemble-averaged speed of sound. This assumption is not valid if fluctuations of the Mach
number are not small. However, since in error analysis, only the order of magnitude of the error is important
this assumption can still be used as long as the unresolved turbulence is at low Mach number, even if the flow
Mach number is not small.

4. Discussion

The analytical results presented above can be used for grid design in practical simulations. For a given aero-
optics problem, once the flow and optical setup is known, one can perform a RANS simulation of the flow,
which is computationally inexpensive, and obtain an estimate of the flow statistics such as �, �c and �n. Having a
candidate grid for an aero-optical simulation, we can obtain the function lcðx; y; zÞ based on the local resolu-
tion of the grid. If lc satisfies the condition given by Eq. (25) (which reduces to Eq. (24) or Eq. (19) for simpler
cases) for a given aero-optical parameters, one can be assured that the grid has adequate resolution for the
aero-optical computation. Based on this criterion we can also compare aero-optical errors of different grids
and select the optimal grid for the simulation.
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It should be noted that if the error of a given aero-optical simulation based on the introduced measure is n0

(squared L2 norm error), then according to Eq. (7), Le is of order k
ffiffiffiffiffi
n0

p
. In other words, while the energy of the

error is of order n0 the computational error of the electromagnetic field and the optical irradiance (due to unre-
solved structures) is of order

ffiffiffiffiffi
n0

p
� Le=k (cf. Eq. (4)). However, in most aero-optical applications we are inter-

ested in the ensemble-averaged far-field irradiance rather than the instantaneous field. Since the ensemble
average of unresolved field in a correct LES is zero, ensemble average of Le is zero as well (see Eq. (2)). Hence,
the leading error term in computation of the averaged optical irradiance is of order L2

e=k
2 � n0. As a result, if

the ensemble-averaged optical statistics are quantities of interest in an aero-optical simulation, their error is of
order n0 and not

ffiffiffiffiffi
n0

p
. Therefore, it is not required to choose an extremely small n for such computations.

5. Numerical example: aero-optical distortion by flow over a cylinder

To test our analysis for a complex flow configuration, we considered turbulent flow over a circular cylinder,
and compared the error of the aero-optical computations due to unresolved flow with that predicted by Eq.
(26).

LES of 3D flow over cylinder at Re ¼ 3900 and M ¼ 0:4 was performed. Fig. 2 shows the computational
grid in x-y plane near the cylinder together with a schematic of the optical beam. The computational domain
extends to about 18 diameters ðDÞ around the cylinder and the spanwise depth of the domain is pD. The mesh
size is 288� 200� 48 in wall normal, azimuthal and spanwise directions respectively. The computer code
developed by Nagarajan et al. [19] which uses 6th order padé discretization was used for the flow computa-
tions. These computations have been validated against previous numerical and experimental studies [3]. 800
snapshots of the flow corresponding from 14 shedding cycles were used for aero-optical computations.

According to Eq. (2), wavefront distortions are computed for an optical beam with diameter of 0:3D. The
beam path starts from the surface of the cylinder and makes an angle of 17� with the direction of downstream
mean flow (see Fig. 2). The depth of the turbulent region, Dz, is assumed to be 10D in this computation. Using
Fourier optics method [20] the far-field optical intensity is computed. The optical wavelength, k, is assumed to
be equal to 5� 10�6D and the beam was assumed to have a Gaussian profile.

To check the effectiveness of the proposed criterion in predicting the accuracy of aero-optical computations,
it is required to compare LES results with that obtained from a well resolved simulation. Therefore, we per-
formed DNS of this flow using a finer grid with size of 576� 400� 96 in wall normal, azimuthal and spanwise
directions respectively (finer by a factor of 2 in each direction). In addition, instead of relying on RANS, DNS
results where used to directly compute the dissipation field (Fig. 3).
Fig. 2. LES grid in x–y plane. Dashed lines represent the domain of optical propagation. Contours of instantaneous vorticity magnitude
(computed by LES) are shown in the background.



Fig. 3. Dissipation field in the cylinder wake. Values are non-dimensionalized by the speed of sound and cylinder diameter.
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Given � from DNS, and lc from local grid resolution of the coarse grid, Eq. (26) is used to estimate the
error of aero-optical computations. In the integration, spatial variation of ensemble-averaged density and
speed of sound were ignored due to relatively low Mach number. Assuming Bp ¼ 8:5, the error of aero-opti-
cal computation based on the LES was calculated to be 12%. In other words it was predicted that, in the
aero-optical computation, the energy of the error field. On the other hand the error can be obtained directly
by comparing the results of DNS and LES. Fig. 4 shows the mean optical intensity (amplitude squared)
profile at the far-field obtained from the two flow simulations. Due to the effect of small flow structures,
optical pattern obtained from DNS is more dispersed than that of LES. The average difference between
the two plots defined as
Fig. 4
averag
Intensi
R R
j j UDNSj2 � j ULESj2 j dxdyR R

j U DNSj2dxdy
ð27Þ
is computed to be 10% for this case which is close to the estimated value. Eventhough the error measure de-
fined by Eq. (27) is different from the error measure that Eq. (26) predicts, we still obtain about the same value
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. Ensemble-averaged optical intensity at the far-field distance of 105D. The x-axis is perpendicular to the beam axis and the
ing is performed in time and homogeneous direction of the flow. Instantaneous results have been tilt-removed before averaging.
ty values are non-dimensionalized by peak aperture intensity; Solid, DNS; Dashed, LES.
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as discussed in Section 4. To have a mathematically consistent test of performance of Eq. (26) we have to
compute
R R

j U DNS � U LESj2dxdyR R
j U DNSj2dxdy

: ð28Þ
However, since the two simulations are not instantaneously representing the same flow, it is not reasonable to
subtract instantaneous optical results of the two simulations. To remedy this issue, instead of using the LES
results for comparison we used optical computations obtained from filtered DNS flow field. A high order low-
pass filter with width of twice the grid spacing was used to obtain a coarser(LES) representation of the flow
over which optical computation was performed. The electromagnetic fields obtained from DNS was compared
to that of filtered DNS and the error based on Eq. (28) was computed to be 13%. Once again, compared to the
estimated value of 12%, this result indicates that the proposed analysis can be used to check the adequacy of
grid resolution for aero-optical simulations. The difference between the estimated value and the real value of
the error is related to several factors including low Reynolds number of the flow, and ignoring spacial varia-
tion of �c and �n.

6. Conclusion

We obtained a criterion to determine the grid resolution required for accurate computation of aero-optical
distortions by turbulent flows. Based on this criterion, optical wavelength, depth of the turbulent field, length
scale of large flow structures, characteristic Mach number and index of refraction are the governing param-
eters in determining the required resolution. We observed that the resolution requirement does not scale with
Reynolds number for high Reynolds number flows. Also, under practical conditions, this criterion does not
impose significant additional cost in a typical LES. This implies that large-eddy simulation with the resolution
determined by the proposed criterion can directly capture aero-optical effects of typical flow fields.
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Appendix A. Relationship between RLe
and Rne

In this appendix, the relationship between RLe and Rne given by Eq. (8) is derived. By using the ergodic
assumption one can write
RLeðx; yÞ 	 Leðx0 þ x; y0 þ yÞLeðx0; y 0Þ ’
1

a

Z
a
Leðx0 þ x; y0 þ yÞLeðx0; y 0Þdx0 dy 0; ðA1Þ
where a is the aperture area whose dimension is much larger than the correlation length scale of Le. Also,
according to its definition, the OPL error due to unresolved flow is
Leðx; yÞ ¼
Z z¼z1

z¼z0

neðx; y; zÞdz: ðA2Þ
Substituting Eq. (A2) into Eq. (A1) results in
RLeðx; yÞ ¼
1

a

Z
x;y2a

Z z0¼z1

z0¼z0

neðx0 þ x; y 0 þ y; z0Þdz0
 ! Z z0¼z1

z0¼z0

neðx0; y0; z0Þdz0
 !

dx0 dy0: ðA3Þ
A simple change of variable leads to
RLeðx; yÞ ¼
1

a

Z
x;y2a

Z z¼z1�z0

z¼z0�z0
neðx0 þ x; y0 þ y; z0 þ zÞdz

 ! Z z0¼z1

z0¼z0

neðx0; y0; z0Þdz0
 !

dx0 dy0: ðA4Þ
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By reordering Eq. (A4) we obtain
RLeðx; yÞ ¼
1

a

Z z0¼z1

z0¼z0

Z z¼z1�z0

z¼z0�z0

Z
x;y2a

neðx0 þ x; y 0 þ y; z0 þ zÞneðx0; y 0; z0Þdx0 dy0 dzdz0: ðA5Þ
In the next step we switch the integration order between z and z0. To do so we first split the integration domain
into two parts:
RLeðx; yÞ ¼
1

a

Z z0¼z1

z0¼z0

Z z¼z1�z0

z¼0

Z
x;y2a

neðx0 þ x; y 0 þ y; z0 þ zÞneðx0; y 0; z0Þdx0 dy0 dzdz0

þ 1

a

Z z0¼z1

z0¼z0

Z z¼0

z¼z0�z0

Z
x;y2a

neðx0 þ x; y0 þ y; z0 þ zÞneðx0; y 0; z0Þdx0 dy 0 dzdz0: ðA6Þ
By switching the order of integration we obtain
RLeðx; yÞ ¼
1

a

Z z0¼Dz

z¼0

Z z0¼z1�z

z0¼z0

Z
x;y2a

neðx0 þ x; y0 þ y; z0 þ zÞneðx0; y0; z0Þdx0 dy 0 dzdz0

þ 1

a

Z z¼0

z¼�Dz

Z z0¼z1

z0¼z0�z

Z
x;y2a

neðx0 þ x; y0 þ y; z0 þ zÞneðx0; y0; z0Þdx0 dy 0 dzdz0; ðA7Þ
where Dz ¼ z1 � z0. Now the integrations over x, y and z0 can be rewritten in terms of correlations of ne
RLeðx; yÞ ¼
Z z¼Dz

z¼0

ðz1 � z� z0ÞRneðx; y; zÞdzþ
Z z¼0

z¼�Dz
ðz1 þ z� z0ÞRneðx; y; zÞdz

¼
Z z¼Dz

z¼�Dz
ðDz� j z jÞRneðx; y; zÞdz ðA8Þ
Assuming that the correlation length scale of the unresolved refractive index field ne is much smaller than
depth of turbulence, Dz, Rne for fixed x and y will vanish much faster than Dz� j z j. Hence, we can assume
Dz� j z j� Dz in the interval of non-zero Rne . As a result Eq. (A8) can be approximated by
RLeðx; yÞ ’ Dz
Z z¼þ1

z¼�1
Rneðx; y; zÞdz ðA9Þ
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